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Abstract. We calculate the spectral dimension of a wide class of tree-like fractals by solving the
random walk problem using a new analytical technique, based on invariance under generalized
cutting-decimation transformations. These fractals are generalizations of theNTD lattices and
they are characterized by noninteger spectral dimension equal to or greater than 2, nonanomalous
diffusion laws, dynamical dimension splitting and the absence of phase transitions for spin
models.

1. Introduction

The spectral dimensioñd of non translation-invariant structures is up to now the best
generalization of the Euclidean dimension of lattices when dealing with dynamical and
thermodynamical properties. It can be defined according to the large-time asymptotic
behaviour of random walks and it can be shown to be relevant for several different physical
phenomena, such as vibrational dynamics, electrical conductivity and phase transitions.
Many properties of̃d have been argued and proved starting from exact analytical calculations
on a few particular cases and any further progress in understanding its relevance strongly
depends on the availability of exact results in a wider range of particular cases. The most
used mathematical tools to calculated̃ belong to two main classes: renormalization group
and combinatorial techniques. Unfortunately, renormalization group can give exact results
only on exactly decimable fractals which, in turn, have been shown to haved̃ < 2. On the
other hand combinatorial techniques, based on the iteration of cuttings, can only be applied
to discrete structures with a given characteristic scale. Recently, a particular combination
of both techniques has been successfully applied to the more complex case ofNTD lattices
[1]. These lattices are not exactly decimable but they are invariant under a more complex
geometrical transformation we shall call cutting-decimation. OnNTD lattices the random
walks problem has been analytically solved using a cutting-decimation method based on
a time-rescaling technique [2]. TheNTD has been shown to have remarkable properties
such as noninteger spectral dimension equal to or greater than 2, nonanomalous diffusion
laws, absence of phase transitions [3] and dynamical dimension splitting [4]. Because of
these peculiar characteristics,NTD lattices have been widely used for the study of statistical
mechanics on non translation-invariant lattices and they have opened the way for the research
of other structures sharing the same properties.
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Figure 1. 2mNTD with k = 3, m = 1.

In this paper we deal with generalizations ofNTD lattices we shall call 2mNTD, nNTD
andp-polygonNTD introducing three corresponding new techniques to analytically solve
the random walks problem. As a result we obtain very general structures with the same
properties ofNTD and, at the same time, test new techniques that can be useful in other
cases of non exactly decimable fractals.

2. Random walks on 2mNTD via exact time rescaling

The 2mNTD are infinite fractal trees that can be recursively built using the following method
(figure 1). An origin pointO is connected to pointA by a link of length 1 (the log of the
tree); fromA the log splits intok branches of length 2m (i.e. made of 2m consecutive links)
which, in turn, split intok branches of length 22m and so on in such a way that each branch
of length 2nm splits intok branches of length 2(n+1)m. The simplest case is that ofm = 1
and corresponds to theNTD lattices. The 2mNTD invariance under the cutting-decimation
transform can be described as follows (figure 2). Suppose we cut the log of the tree and
separate thek branches starting fromA. Then each of these branches is exactly the same
as the original tree with a dilatation factor equal to 2m and therefore it can be reduced to
the original tree through decimation. Let us now consider the discrete time random walks
problem on 2mNTD, in order to calculate the spectral dimensiond̃ of the lattice. The
spectral dimension of a graph is defined through the relation [5],

PO(t) ∼ t−d̃/2 (1)

wherePO(t) is the probability for a random walker to return to the starting pointO after
a walk of t steps fort →∞. The cutting transformation applied to random walks gives a
relation betweenP tree

O (t), the probability of returning to the starting siteO after a t-steps
walk on the whole tree, andP branch

A (t), the probability of returning to the starting siteA
after at-steps walks on one of the branches starting fromA. This relation has been obtained
in [2] for the casem = 1 in terms of the generating functions (discrete Laplace transforms)
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Figure 2. Cutting-decimation procedure: (a) cutting of the log of theNTD (b) separation of
the k branches (c) decimation of the points labelled byX (d) recovering of the originalNTD .

P̃ (λ) of the probabilitiesP(t), but it holds for 2mNTD for everym:

P̃O
tree
(λ) = P̃A

branch
(λ)+ k

(1− λ2)PA
branch(λ)+ k . (2)

In them = 1 case the decimation transformation has been performed using a time-rescaling
technique. Indeed, the motion of the random walker on the branch considered only after an
even number of steps can be exactly mapped in the motion of a random walker on the tree
after the introduction of a staying probabilitypii = 1

2 in every sitei. This equivalence can
be introduced in the generating functions through the substitutions [2],

P̃O(λ)→ λ

2− λP̃O
(

2

2− λ
)

(3)

λ→ λ2. (4)

In the casem = 1 equations (3) and (4) can be used to rewrite (2) as

P̃O
tree
(λ) =

2
2−λ2 P̃O

tree
(

λ2

2−λ2

)
+ k

(1− λ2) 2
2−λ2 P̃O

tree
(

λ2

2−λ2

)
+ k

. (5)

If m > 1 this procedure must be iteratedm times obtaining

P̃O
tree
(λ) =

(∏m
i=1

2
2−λ2

i

)
P̃O

tree
(λi+1)+ k

(1− λ2)
(∏m

i=1
2

2−λ2
i

)
P̃O

tree
(λi+1)+ k

(6)

with

λi =


λ i = 1

λ2
i−1

2− λ2
i−1

i > 1
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i being the iteration step. To find the value ofd̃ we consider the singularities of the
generating functions asλ = 1− ε, ε → 0+. In terms ofε the decimation transformation
can be resumed as

P̃A
branch

(ε) ∼ 2mP̃O
tree
(22mε) (7)

asε → 0, so that (6) becomes

P̃O
tree
(ε) ∼ 2mP̃O

tree
(22mε)+ k

2ε2mP̃O
tree
(22mε)+ k

. (8)

From (8), applying standard Tauberian theorems [2] one obtains for a 2mNTD graph,

d̃2m = 1+ ln k

ln 2m
(9)

which represents the generalization of the result obtained form = 1.

3. Random walks onnNTD and p-polygonNTD via asymptotic decimation

The previous results can be extended tonNTD, wheren is now an integer and not necessarily
a power of 2, and top-polygon NTD, where the branches ofNTD are replaced byp-
vertices regular polygons (figure 3). Let us considernNTD first. While relation (2) still
holds, the exact time-rescaling procedure cannot be applied to the branch of generic length
n. However, even in this case it is possible to obtain an asymptotic recursion relation
applying the renormalization group techniques usually implemented on exactly decimable
fractals [6]. Although this procedure cannot give an exact equation forP̃O

tree
(λ) as in the

previous case, it can nevertheless be used to obtain the exact value ofd̃ via an asymptotic
expansion. Indeed, in this case the branch of thenNTD can be considered as a tree with
a dilatation factorn. The log of this tree can be reduced to a unitary length log after the
suppression of then−2 sites between the vertices and introducing a new link connecting the
edges. The same operation can be iterated for branches of every length suppressing the inner

Figure 3. Four-polygonNTD with k = 1, n = 2.
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n−2 consecutive sites in every sequence ofn sites and introducing a new link between the
surviving points. The final structure is equal to the original tree and the generating function

P̃A
branch

(ε) becomes̃PA
′branch

(ε′) where

ε′ = n2ε (10)

P̃A
′branch

(ε′) = 1

n
P̃A

branch
(ε). (11)

Now P̃A
′branch

(ε′) coincides withP̃O
tree
(ε′) since the original branch is now a tree and (2)

can be rewritten as

P̃O
tree
(ε) = nP̃O

tree
(n2ε)+ k

2εnP̃O
tree
(n2ε)+ k

. (12)

Using the procedure described in the previous section for 2mNTD, from (12) it follows that
for an n-NTD the spectral dimension is given by

d̃n = 1+ ln k

ln n
. (13)

An analogous technique can be used forp-polygonNTD (figure 3). The log polygon now
hasp faces of unitary length; from each ofp − 1 of its verticesk polygons depart, whose
faces have lengthn and so on. These structures, though similar toNTD, are no longer
loopless structures nor necessarily bipartite graphs (for example thethree-polygontree).
The cutting-decimation transform can be applied top-polygonNTD as in the case ofNTD
with the same substitutions (10) and (11). Indeed, even if (2) does not hold in this case, a
new relation between the generating functions of the tree and that of one of its branches can
be obtained using bundled structures theory [7]. A bundled structure is a composed graph
obtained by joining to each point of a ‘base graph’ a copy of a ‘fibre’ graph in such a way
that every fibre has only one point in common with the base and no points in common with
the other fibres. Let us consider ap-polygonNTD and suppose to attachk branches also
in the free vertex of the log (the root of the tree): we obtain a bundled structure having the
log polygon as a base and the graph made ofk branches as the fibre. Since for ap-polygon,

P̃O(λ) ∼ 1

p(1− λ) (14)

asλ→ 1, we obtain for our bundled structure,

P̃O
b.s.
(λ) = 1

1− k
k+1F̃A

branch
(λ)

1

p

1− λ

k + 1

1

1− k
k+1F̃A

branch
(λ)

−1

(15)

whereP̃O
b.s.
(λ) is the generating function of the probability of returning to pointO (one of

the vertices of the log polygon) after a random walk on the bundled structure andF̃A
branch

(λ)

is the generating function of the probability of returning for the first time to the point of
connection with the base after a random walk on the fibre. For a generic structure the
generating function of the probability of returning to the starting pointO, P̃O(λ) and of
returning for the first time to the starting point,̃FO(λ), satisfy [8],

P̃O(λ) = (1− F̃O(λ))−1. (16)

Using

F̃O
b.s.
(λ) = k

k + 1
F̃A

branch
(λ)+ 1

k + 1
F̃O

tree
(λ) (17)



5018 R Burioni et al

whereFO tree(λ) refers to thep-polygonNTD, from equations (15)–(17) a relation between

P̃O
tree
(λ) and P̃A

branch
(λ) follows, which represents the cutting transformation. It is now

possible to perform the cutting-decimation transform forp-polygonNTD and obtain

d̃p = 1+ ln k(p − 1)

ln n
. (18)

In the same way we can calculate the spectral dimension of anNTD built with d-dimensional
simplexes instead ofp-polygons. A d-dimensional simplex is a complete graph ofd + 1
points i.e. a graph where each point is the nearest neighbour of all other points. The two-
dimensional case is the triangle, the three-dimensional case is the tetrahedron and so on.
Since for thed-simplex P̃O(λ) ∼ 1/(d + 1)(1− λ) the spectral dimension is

d̃d = 1+ ln kd

ln n
. (19)

4. Conclusions

The generalizedNTD lattices described here have in general noninteger spectral dimension
depending on the geometrical features of the lattices, such as the growing factor 2m or n,
the number of branchesk and the number of vertices of the polygon. Since the intrinsic
fractal dimension always coincides with the spectral dimension, the diffusion [2] on all of
these lattices is not anomalous i.e. is described by the asymptotic law,

〈r2(t)〉 ∼ tα (20)

with α = 1. Moreover, as in the case of simpleNTD lattices [4], we can also show that
generalizedNTD present dynamical dimension splitting. This means that the vibrational
spectral dimensiond, which characterizes the density of vibrational modes asω → 0
through the relation,

ρ(ω) ∼ ωd−1 (21)

is different from the diffusive spectral dimension of random walksd̃. In particular we
haved = 1 and this can be intuitively understood noting that the topology of generalized
NTD is dominated by linear chains which become increasingly longer in the outer branches.
Sinced = 1, by the generalized Mermin and Wagner theorem [9], phase transitions with
spontaneous breaking of a continuous symmetry for nonzero temperature cannot occur on
these structures. All of these remarkable properties, typical of simpleNTD lattices, have
been obtained here even in the absence of some peculiar characteristics ofNTD such as
the bipartite and loopless nature of the graph. This enlarged family of lattices can be used,
asNTD lattices, to reach a better understanding of the geometrical features giving rise to
dynamical dimension splitting and, at the same time, they represent the testing ground to
study the relation between spectral dimensions and physical phenomena.
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